Skip to main content

How do I find the most expensive queries in my ClickHouse platform?

· 2 min read

The query_log table in the system database keeps track of all your queries, including:

  • how much memory the query consumed, and
  • how much CPU time was needed

The following query returns the top 10 queries, where "top" means the queries that used the most memory:

SELECT
type,
event_time,
initial_query_id,
formatReadableSize(memory_usage) AS memory,
ProfileEvents.Values[indexOf(ProfileEvents.Names, 'UserTimeMicroseconds')] AS userCPU,
ProfileEvents.Values[indexOf(ProfileEvents.Names, 'SystemTimeMicroseconds')] AS systemCPU,
normalizedQueryHash(query) AS normalized_query_hash
FROM clusterAllReplicas(default, system.query_log)
ORDER BY memory_usage DESC
LIMIT 10;

The response looks like

┌─type────────┬──────────event_time─┬─initial_query_id─────────────────────┬─memory─────┬─────userCPU─┬──systemCPU─┬─normalized_query_hash─┐
│ QueryFinish │ 2023-03-26 21:36:07 │ 7fc488a5-838f-410d-88ee-2f492825a26b │ 3.45 GiB │ 28147128901 │ 8590897697 │ 178963678599600243 │
│ QueryFinish │ 2023-03-26 21:36:04 │ 7fc488a5-838f-410d-88ee-2f492825a26b │ 1.18 GiB │ 10194162387 │ 1183376457 │ 4121209451971717712 │
│ QueryFinish │ 2023-03-26 21:36:06 │ 7fc488a5-838f-410d-88ee-2f492825a26b │ 1.16 GiB │ 10516510952 │ 1484303318 │ 4121209451971717712 │
│ QueryFinish │ 2023-03-26 21:35:59 │ 7fc488a5-838f-410d-88ee-2f492825a26b │ 1.14 GiB │ 11484580963 │ 1464145099 │ 4121209451971717712 │
│ QueryFinish │ 2023-03-26 21:47:01 │ 8119e682-a343-4847-96e7-d34ad8a748a1 │ 455.29 MiB │ 123340498 │ 8234304 │ 10687606311941357470 │
│ QueryFinish │ 2023-03-26 22:07:05 │ f2690e48-fe1e-4367-ae9d-435d962003a5 │ 377.94 MiB │ 2358130001 │ 668098391 │ 5988812223780974416 │
│ QueryFinish │ 2023-03-26 20:45:42 │ 04618222-40a1-4299-8c3d-9f050a82d849 │ 18.48 MiB │ 24676 │ 16620 │ 3205198713665290475 │
│ QueryFinish │ 2023-03-26 22:14:37 │ badf1097-5f8f-4486-88e9-3a5ac2e4734c │ 17.41 MiB │ 186234 │ 148739 │ 1910846996890686559 │
│ QueryFinish │ 2023-03-26 21:39:42 │ 8d373327-f566-4cd5-9f2c-cec75f534751 │ 16.19 MiB │ 23169 │ 12365 │ 3205198713665290475 │
│ QueryFinish │ 2023-03-26 21:35:42 │ ea672dba-7c10-4dd4-b819-cad9dccbf5d0 │ 13.97 MiB │ 20696 │ 8001 │ 3205198713665290475 │
└─────────────┴─────────────────────┴──────────────────────────────────────┴────────────┴─────────────┴────────────┴───────────────────────┘

You can use the query ID to extract more details about the query. Let's research our longest running query above (the first one):

SELECT query
FROM clusterAllReplicas(default, system.query_log)
WHERE initial_query_id = '7fc488a5-838f-410d-88ee-2f492825a26b'

It turns out to be the query we used to insert a few billion rows of data into a table named youtube (see the YouTube dislikes dataset):

INSERT INTO youtube
SETTINGS input_format_null_as_default = 1
SELECT
id,
parseDateTimeBestEffortUS(toString(fetch_date)) AS fetch_date,
upload_date,
ifNull(title, '') AS title,
uploader_id,
ifNull(uploader, '') AS uploader,
uploader_sub_count,
is_age_limit,
view_count,
like_count,
dislike_count,
is_crawlable,
has_subtitles,
is_ads_enabled,
is_comments_enabled,
ifNull(description, '') AS description,
rich_metadata,
super_titles,
ifNull(uploader_badges, '') AS uploader_badges,
ifNull(video_badges, '') AS video_badges
FROM s3Cluster('default','https://clickhouse-public-datasets.s3.amazonaws.com/youtube/original/files/*.zst', 'JSONLines')