Skip to main content

Java Language Client Options for ClickHouse

There are three options for connecting to ClickHouse using Java:

Java Client

Provides the most flexible and performant way to integrate your app with ClickHouse.

Environment requirements

Compatibility with ClickHouse

Client versionClickHouse
0.4.020.7+

Installation

<dependency>
<groupId>com.clickhouse</groupId>
<!-- or clickhouse-grpc-client if you prefer gRPC -->
<artifactId>clickhouse-http-client</artifactId>
<version>0.4.0</version>
</dependency>

Supported data types

FormatSupportComment
AggregatedFunctionlimited to groupBitmap, and known to have issue with 64bit bitmap
Array(*)
Bool
Date*
DateTime*
Decimal*SET output_format_decimal_trailing_zeros=1 in 21.9+ for consistency
Enum*can be treated as both string and integer
Geo TypesPoint, Ring, Polygon, and MultiPolygon
Int*, UInt*UInt64 is mapped to long
IPv*
Map(*)
Nested(*)
Object('JSON')
SimpleAggregateFunction
*String
Tuple(*)
UUID

Driver API

Connect to ClickHouse

URL Syntax: protocol://host[:port][/database][?param[=value][&param[=value]][#tag[,tag]], for example:

  • http://localhost:8443?ssl=true&sslmode=NONE
  • http://(https://explorer@play.clickhouse.com:443
  • tcp://localhost?!auto_discovery#experimental),(grpc://localhost#experimental)?failover=3#test
ClickHouseNodes servers = ClickHouseNodes.of(
"jdbc:ch:http://server1.domain,server2.domain,server3.domain/my_db"
+ "?load_balancing_policy=random&health_check_interval=5000&failover=2");

Query

ClickHouseResponse response = client.connect(endpoint) // or client.connect(endpoints)
// you'll have to parse response manually if using a different format
.format(ClickHouseFormat.RowBinaryWithNamesAndTypes)
.query("select * from numbers(:limit)")
.params(1000).executeAndWait()) {
ClickHouseResponseSummary summary = response.getSummary();
long totalRows = summary.getTotalRowsToRead();

Streaming Query

ClickHouseResponse response = client.connect(endpoint) // or client.connect(endpoints)
// you'll have to parse response manually if using a different format
.format(ClickHouseFormat.RowBinaryWithNamesAndTypes)
.query("select * from numbers(:limit)")
.params(1000).executeAndWait()) {
for (ClickHouseRecord r : response.records()) {
int num = r.getValue(0).asInteger();
// type conversion
String str = r.getValue(0).asString();
LocalDate date = r.getValue(0).asDate();
}

Insert

try (ClickHouseClient client = ClickHouseClient.newInstance(ClickHouseProtocol.HTTP)) {
ClickHouseRequest<?> request = client.connect(servers).format(ClickHouseFormat.RowBinaryWithNamesAndTypes);
// load data into a table and wait until it's completed
request.write()
.query("insert into my_table select c2, c3 from input('c1 UInt8, c2 String, c3 Int32')")
.data(myInputStream).execute().thenAccept(response -> {
response.close();
});

Multiple queries

Execute multiple queries in a worker thread one after another within same session:

CompletableFuture<List<ClickHouseResponseSummary>> future = ClickHouseClient.send(servers.get(),
"create database if not exists my_base",
"use my_base",
"create table if not exists test_table(s String) engine=Memory",
"insert into test_table values('1')('2')('3')",
"select * from test_table limit 1",
"truncate table test_table",
"drop table if exists test_table");

// block current thread until queries completed, and then retrieve summaries
List<ClickHouseResponseSummary> results = future.get();

JDBC Driver

clickhouse-jdbc implements the standard JDBC interface. Being built on top of clickhouse-client, it provides additional features like custom type mapping, transaction support, and standard synchronous UPDATE and DELETE statements, etc., so that it can be easily used with legacy applications and tools.

clickhouse-jdbc API is synchronous, and generally, it has more overheads(e.g., SQL parsing and type mapping/conversion, etc.). Consider clickhouse-client when performance is critical or if you prefer a more direct way to access ClickHouse.

Environment requirements

Compatibility with ClickHouse

Client versionClickHouse
0.4.020.7+

Installation

<dependency>
<groupId>com.clickhouse</groupId>
<artifactId>clickhouse-jdbc</artifactId>
<version>0.4.0</version>
<!-- use uber jar with all dependencies included, change classifier to http for smaller jar -->
<classifier>all</classifier>
<exclusions>
<exclusion>
<groupId>*</groupId>
<artifactId>*</artifactId>
</exclusion>
</exclusions>
</dependency>

Configuration

Driver Class: com.clickhouse.jdbc.ClickHouseDriver

URL Syntax: jdbc:(ch|clickhouse)[:<protocol>]://endpoint1[,endpoint2,...][/<database>][?param1=value1&param2=value2][#tag1,tag2,...], for example:

  • jdbc:ch://localhost is same as jdbc:clickhouse:http://localhost:8123
  • jdbc:ch:https://localhost is same as jdbc:clickhouse:http://localhost:8443?ssl=true&sslmode=STRICT
  • jdbc:ch:grpc://localhost is same as jdbc:clickhouse:grpc://localhost:9100

Connection Properties:

PropertyDefaultDescription
continueBatchOnErrorfalseWhether to continue batch processing when error occurred
createDatabaseIfNotExistfalseWhether to create database if it does not exist
custom_http_headerscomma separated custom http headers, for example: User-Agent=client1,X-Gateway-Id=123
custom_http_paramscomma separated custom http query parameters, for example: extremes=0,max_result_rows=100
nullAsDefault00 - treat null value as is and throw exception when inserting null into non-nullable column; 1 - treat null value as is and disable null-check for inserting; 2 - replace null to default value of corresponding data type for both query and insert
jdbcCompliancetrueWhether to support standard synchronous UPDATE/DELETE and fake transaction
typeMappingsCustomize mapping between ClickHouse data type and Java class, which will affect result of both getColumnType() and getObject(Class<?>). For example: UInt128=java.lang.String,UInt256=java.lang.String
wrapperObjectfalseWhether getObject() should return java.sql.Array / java.sql.Struct for Array / Tuple.

Note: please refer to JDBC specific configuration for more.

Supported data types

FormatSupportComment
AggregatedFunctionlimited to groupBitmap, and known to have issue with 64bit bitmap
Array(*)
Bool
Date*
DateTime*
Decimal*SET output_format_decimal_trailing_zeros=1 in 21.9+ for consistency
Enum*can be treated as both string and integer
Geo TypesPoint, Ring, Polygon, and MultiPolygon
Int*, UInt*UInt64 is mapped to long
IPv*
Map(*)
Nested(*)
Object('JSON')
SimpleAggregateFunction
*String
Tuple(*)
UUID

Driver API

Connect to ClickHouse

String url = "jdbc:ch://my-server/system"; // use http protocol and port 8123 by default
// String url = "jdbc:ch://my-server:8443/system?ssl=true&sslmode=strict&&sslrootcert=/mine.crt";
Properties properties = new Properties();
// properties.setProperty("ssl", "true");
// properties.setProperty("sslmode", "NONE"); // NONE to trust all servers; STRICT for trusted only
ClickHouseDataSource dataSource = new ClickHouseDataSource(url, new Properties());
try (Connection conn = dataSource.getConnection("default", "password");
Statement stmt = conn.createStatement()) {
}

Query


try (Connection conn = dataSource.getConnection(...);
Statement stmt = conn.createStatement()) {
ResultSet rs = stmt.executeQuery("select * from numbers(50000)");
while(rs.next()) {
// ...
}
}

Insert

note
  • Use PreparedStatement instead of Statement
  • Use input function whenever possible
With input table function

Recommended way with the best performance

try (PreparedStatement ps = conn.prepareStatement(
"insert into mytable select col1, col2 from input('col1 String, col2 DateTime64(3), col3 Int32')")) {
// the column definition will be parsed so the driver knows there are 3 parameters: col1, col2 and col3
ps.setString(1, "test"); // col1
ps.setObject(2, LocalDateTime.now()); // col2, setTimestamp is slow and not recommended
ps.setInt(3, 123); // col3
ps.addBatch(); // parameters will be write into buffered stream immediately in binary format
...
ps.executeBatch(); // stream everything on-hand into ClickHouse
}
Insert

It's easier to use but slower performance compare to input function

try (PreparedStatement ps = conn.prepareStatement("insert into mytable(* except (description))")) {
// the driver will issue query "select * except (description) from mytable where 0" for type inferring
// since description column is excluded, we know there are only two parameters: col1 and col2
ps.setString(1, "test"); // id
ps.setObject(2, LocalDateTime.now()); // timestamp
ps.addBatch(); // parameters will be write into buffered stream immediately in binary format
...
ps.executeBatch(); // stream everything on-hand into ClickHouse
}
Insert with placeholders

Not recommended as it's based on a large SQL

// Note: "insert into mytable values(?,?,?)" is treated as "insert into mytable"
try (PreparedStatement ps = conn.prepareStatement("insert into mytable values(trim(?),?,?)")) {
ps.setString(1, "test"); // id
ps.setObject(2, LocalDateTime.now()); // timestamp
ps.setString(3, null); // description
ps.addBatch(); // append parameters to the query
...
ps.executeBatch(); // issue the composed query: insert into mytable values(...)(...)...(...)
}

Advanced API

Handling DateTime and time zones

Please to use java.time.LocalDateTime or java.time.OffsetDateTime instead of java.sql.Timestamp, and java.time.LocalDate instead of java.sql.Date.

try (PreparedStatement ps = conn.prepareStatement("select date_time from mytable where date_time > ?")) {
ps.setObject(2, LocalDateTime.now());
ResultSet rs = ps.executeQuery();
while(rs.next()) {
LocalDateTime dateTime = (LocalDateTime) rs.getObject(1);
}
...
}

Handling AggregateFunction

note

As of now, only groupBitmap is supported.

// batch insert using input function
try (ClickHouseConnection conn = newConnection(props);
Statement s = conn.createStatement();
PreparedStatement stmt = conn.prepareStatement(
"insert into test_batch_input select id, name, value from input('id Int32, name Nullable(String), desc Nullable(String), value AggregateFunction(groupBitmap, UInt32)')")) {
s.execute("drop table if exists test_batch_input;"
+ "create table test_batch_input(id Int32, name Nullable(String), value AggregateFunction(groupBitmap, UInt32))engine=Memory");
Object[][] objs = new Object[][] {
new Object[] { 1, "a", "aaaaa", ClickHouseBitmap.wrap(1, 2, 3, 4, 5) },
new Object[] { 2, "b", null, ClickHouseBitmap.wrap(6, 7, 8, 9, 10) },
new Object[] { 3, null, "33333", ClickHouseBitmap.wrap(11, 12, 13) }
};
for (Object[] v : objs) {
stmt.setInt(1, (int) v[0]);
stmt.setString(2, (String) v[1]);
stmt.setString(3, (String) v[2]);
stmt.setObject(4, v[3]);
stmt.addBatch();
}
int[] results = stmt.executeBatch();
...
}

// use bitmap as query parameter
try (PreparedStatement stmt = conn.prepareStatement(
"SELECT bitmapContains(my_bitmap, toUInt32(1)) as v1, bitmapContains(my_bitmap, toUInt32(2)) as v2 from {tt 'ext_table'}")) {
stmt.setObject(1, ClickHouseExternalTable.builder().name("ext_table")
.columns("my_bitmap AggregateFunction(groupBitmap,UInt32)").format(ClickHouseFormat.RowBinary)
.content(new ByteArrayInputStream(ClickHouseBitmap.wrap(1, 3, 5).toBytes()))
.asTempTable()
.build());
ResultSet rs = stmt.executeQuery();
Assert.assertTrue(rs.next());
Assert.assertEquals(rs.getInt(1), 1);
Assert.assertEquals(rs.getInt(2), 0);
Assert.assertFalse(rs.next());
}

R2DBC driver

R2DBC wrapper of async Java client for ClickHouse.

Environment requirements

Compatibility with ClickHouse

Client versionClickHouse
0.4.020.7+

Installation

<dependency>
<groupId>com.clickhouse</groupId>
<!-- change to clickhouse-r2dbc_0.9.1 for SPI 0.9.1.RELEASE -->
<artifactId>clickhouse-r2dbc</artifactId>
<version>0.4.0</version>
<!-- use uber jar with all dependencies included, change classifier to http or grpc for smaller jar -->
<classifier>all</classifier>
<exclusions>
<exclusion>
<groupId>*</groupId>
<artifactId>*</artifactId>
</exclusion>
</exclusions>
</dependency>

Supported data types

FormatSupportComment
AggregatedFunctionlimited to groupBitmap, and known to have issue with 64bit bitmap
Array(*)
Bool
Date*
DateTime*
Decimal*SET output_format_decimal_trailing_zeros=1 in 21.9+ for consistency
Enum*can be treated as both string and integer
Geo TypesPoint, Ring, Polygon, and MultiPolygon
Int*, UInt*UInt64 is mapped to long
IPv*
Map(*)
Nested(*)
Object('JSON')
SimpleAggregateFunction
*String
Tuple(*)
UUID

Driver API

Connect to ClickHouse

ConnectionFactory connectionFactory = ConnectionFactories
.get("r2dbc:clickhouse:http://{username}:{password}@{host}:{port}/{database}");

Mono.from(connectionFactory.create())
.flatMapMany(connection -> connection

Query

connection
.createStatement("select domain, path, toDate(cdate) as d, count(1) as count from clickdb.clicks where domain = :domain group by domain, path, d")
.bind("domain", domain)
.execute())
.flatMap(result -> result
.map((row, rowMetadata) -> String.format("%s%s[%s]:%d", row.get("domain", String.class),
row.get("path", String.class),
row.get("d", LocalDate.class),
row.get("count", Long.class)))
)
.doOnNext(System.out::println)
.subscribe();

Insert

connection
.createStatement("insert into clickdb.clicks values (:domain, :path, :cdate, :count)")
.bind("domain", click.getDomain())
.bind("path", click.getPath())
.bind("cdate", LocalDateTime.now())
.bind("count", 1)
.execute();